|国家预印本平台
首页|GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation

GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation

GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation

来源:Arxiv_logoArxiv
英文摘要

Gliomas are aggressive brain tumors that pose serious health risks. Deep learning aids in lesion segmentation, but CNN and Transformer-based models often lack context modeling or demand heavy computation, limiting real-time use on mobile medical devices. We propose GaMNet, integrating the NMamba module for global modeling and a multi-scale CNN for efficient local feature extraction. To improve interpretability and mimic the human visual system, we apply Gabor filters at multiple scales. Our method achieves high segmentation accuracy with fewer parameters and faster computation. Extensive experiments show GaMNet outperforms existing methods, notably reducing false positives and negatives, which enhances the reliability of clinical diagnosis.

Chengwei Ye、Huanzhen Zhang、Yufei Lin、Kangsheng Wang、Linuo Xu、Shuyan Liu

肿瘤学神经病学、精神病学医学研究方法

Chengwei Ye,Huanzhen Zhang,Yufei Lin,Kangsheng Wang,Linuo Xu,Shuyan Liu.GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation[EB/OL].(2025-05-08)[2025-07-19].https://arxiv.org/abs/2505.05520.点此复制

评论