Regularity and pointwise convergence for dispersive equations with asymptotically concave phase on Damek-Ricci spaces
Regularity and pointwise convergence for dispersive equations with asymptotically concave phase on Damek-Ricci spaces
We study the Carleson's problem on Damek-Ricci spaces $S$ for dispersive equations: \begin{equation*} \begin{cases} i\frac{\partial u}{\partial t} +\Psi(\sqrt{-\mathcal{L}} )u=0\:,\: (x,t) \in S \times \mathbb{R} \:, \\ u(0,\cdot)=f\:,\: \text{ on } S \:, \end{cases} \end{equation*} where $\mathcal{L}= \Delta$, the Laplace-Beltrami operator or $\tilde{\Delta}$, the shifted Laplace-Beltrami operator, so that the corresponding phase function $\psi$ satisfies for some $a \in (0,1)$, the large frequency asymptotic: \begin{equation*} \psi(\lambda)=\lambda^a + \mathcal{O}(1)\:,\:\: \lambda \gg 1\:. \end{equation*} For almost everywhere pointwise convergence of the solution $u$ to its radial initial data $f$, we obtain the almost sharp regularity threshold $\beta>a/4$. This result is new even for $\mathbb{R}^n$ and in the special case of the fractional Schr\"odinger equations, generalizes classical Euclidean results of Walther.
Utsav Dewan
数学
Utsav Dewan.Regularity and pointwise convergence for dispersive equations with asymptotically concave phase on Damek-Ricci spaces[EB/OL].(2025-06-01)[2025-06-16].https://arxiv.org/abs/2506.00881.点此复制
评论