|国家预印本平台
首页|Ramanujan's partition generating functions modulo $\ell$

Ramanujan's partition generating functions modulo $\ell$

Ramanujan's partition generating functions modulo $\ell$

来源:Arxiv_logoArxiv
英文摘要

For the partition function $p(n)$, Ramanujan proved the striking identities $$ P_5(q):=\sum_{n\geq 0} p(5n+4)q^n =5\prod_{n\geq 1} \frac{\left(q^5;q^5\right)_{\infty}^5}{(q;q)_{\infty}^6}, $$ $$ P_7(q):=\sum_{n\geq 0} p(7n+5)q^n =7\prod_{n\geq 1}\frac{\left(q^7;q^7\right)_{\infty}^3}{(q;q)_{\infty}^4}+49q \prod_{n\geq 1}\frac{\left(q^7;q^7\right)_{\infty}^7}{(q;q)_{\infty}^8}, $$ where $(q;q)_{\infty}:=\prod_{n\geq 1}(1-q^n).$ As these identities imply his celebrated congruences modulo 5 and 7, it is natural to seek, for primes $\ell \geq 5,$ closed form expressions of the power series $$ P_{\ell}(q):=\sum_{n\geq 0} p(\ell n-\delta_{\ell})q^n\pmod{\ell}, $$ where $\delta_{\ell}:=\frac{\ell^2-1}{24}.$ In this paper, we prove that $$ P_{\ell}(q)\equiv c_{\ell} \frac{T_{\ell}(q)}{ (q^\ell; q^\ell )_\infty} \pmod{\ell}, $$ where $c_{\ell}\in \mathbb{Z}$ is explicit and $T_{\ell}(q)$ is the generating function for the Hecke traces of $\ell$-ramified values of special Dirichlet series for weight $\ell-1$ cusp forms on $SL_2(\mathbb{Z})$. This is a new proof of Ramanujan's congruences modulo 5, 7, and 11, as there are no nontrivial cusp forms of weight 4, 6, and 10.

Kathrin Bringmann、William Craig、Ken Ono

数学

Kathrin Bringmann,William Craig,Ken Ono.Ramanujan's partition generating functions modulo $\ell$[EB/OL].(2025-06-06)[2025-06-16].https://arxiv.org/abs/2506.06101.点此复制

评论