Almost everywhere convergence of Bochner-Riesz means for the Hermite type Laguerre expansions
Almost everywhere convergence of Bochner-Riesz means for the Hermite type Laguerre expansions
Consider the space $\mathbb{R}_+^d=(0,\infty)^d$ equipped with Euclidean distance and the Lebesgue measure. For every $α=(α_1,...,α_d)\in[-1/2,\infty)^d$, we consider the Hermite-Laguerre operator $\mathcal{L}^α=-Î+\arrowvert x\arrowvert^2+\sum_{i=1}^{d}(α_j^2-\frac{1}{4})\frac{1}{x_i^2}$. In this paper we study almost everywhere convergence of the Bochner-Riesz means associated with $\mathcal{L}^α$ which is defined as $S_R^λ(\mathcal{L}^α)f(x)=\sum_{n=0}^{\infty}(1-\frac{4n+2\arrowvertα\arrowvert_1+2d}{R^2})_{+}^λ\mathcal{P}_nf(x)$. Here $\mathcal{P}_nf(x)$ is the n-th Laguerre spectral projection operator and $\arrowvertα\arrowvert_1$ denotes $\sum_{i=1}^{d}α_i$. For $2\leq p<\infty$, we prove that \[ \lim_{R \to \infty} S_R^λ(\mathcal{L}^α)f = f \quad \text{a.e.} \] for all $f\in L^p({\mathbb{R}_+^d})$ provided that $λ>λ(p)/2$ and $λ(p)=\max\{d(1/2-1/p)-1/2,0\}$. Conversely, we show that the convergence generally fails if $λ<λ(p)/2$ in the sense that there exists $f\in L^p({\mathbb{R}_+^d})$ for $2d/(d-1)< p$ such that the convergence fails.
Longben Wei、Zhiwen Duan
数学
Longben Wei,Zhiwen Duan.Almost everywhere convergence of Bochner-Riesz means for the Hermite type Laguerre expansions[EB/OL].(2025-06-20)[2025-07-19].https://arxiv.org/abs/2506.16958.点此复制
评论