Pyramidal Patchification Flow for Visual Generation
Pyramidal Patchification Flow for Visual Generation
Diffusion transformers (DiTs) adopt Patchify, mapping patch representations to token representations through linear projections, to adjust the number of tokens input to DiT blocks and thus the computation cost. Instead of a single patch size for all the timesteps, we introduce a Pyramidal Patchification Flow (PPFlow) approach: Large patch sizes are used for high noise timesteps and small patch sizes for low noise timesteps; Linear projections are learned for each patch size; and Unpatchify is accordingly modified. Unlike Pyramidal Flow, our approach operates over full latent representations other than pyramid representations, and adopts the normal denoising process without requiring the renoising trick. We demonstrate the effectiveness of our approach through two training manners. Training from scratch achieves a $1.6\times$ ($2.0\times$) inference speed over SiT-B/2 for 2-level (3-level) pyramid patchification with slightly lower training FLOPs and similar image generation performance. Training from pretrained normal DiTs achieves even better performance with small training time. The code and checkpoint are at https://github.com/fudan-generative-vision/PPFlow.
Hui Li、Baoyou Chen、Liwei Zhang、Jiaye Li、Jingdong Wang、Siyu Zhu
计算技术、计算机技术
Hui Li,Baoyou Chen,Liwei Zhang,Jiaye Li,Jingdong Wang,Siyu Zhu.Pyramidal Patchification Flow for Visual Generation[EB/OL].(2025-06-30)[2025-07-19].https://arxiv.org/abs/2506.23543.点此复制
评论