Presentations for semigroups of full-domain partitions
Presentations for semigroups of full-domain partitions
The full-domain partition monoid $P_n^{fd}$ has been discovered independently in two recent studies on connections between diagram monoids and category theory. It is a right restriction Ehresmann monoid, and contains both the full transformation monoid and the join semilattice of equivalence relations. In this paper we give presentations (by generators and relations) for $P_n^{fd}$, its singular ideal, and its planar submonoid. The latter is not an Ehresmann submonoid, but it is a so-called grrac monoid in the terminology of Branco, Gomes and Gould. In particular, its structure is determined in part by a right regular band in one-one correspondence with planar equivalences.
Luka Carroll、James East、Matthias Fresacher
数学
Luka Carroll,James East,Matthias Fresacher.Presentations for semigroups of full-domain partitions[EB/OL].(2025-07-07)[2025-07-20].https://arxiv.org/abs/2507.05497.点此复制
评论