|国家预印本平台
首页|Triebel-Lizorkin spaces in Dunkl setting

Triebel-Lizorkin spaces in Dunkl setting

Triebel-Lizorkin spaces in Dunkl setting

来源:Arxiv_logoArxiv
英文摘要

We establish Triebel-Lizorkin spaces in the Dunkl setting which are associated with finite reflection groups on the Euclidean space. The group structures induce two nonequivalent metrics: the Euclidean metric and the Dunkl metric. In this paper, the L^2 space and the Dunkl-Calderon-Zygmund singular integral operator in the Dunkl setting play a fundamental role. The main tools used in this paper are as follows: (i) the Dunkl-Calderon-Zygmund singular integral operator and a new Calderon reproducing formula in L^2 with the Triebel-Lizorkin space norms; (ii) new test functions in terms of the L^2 functions and distributions; (iii) the Triebel-Lizorkin spaces in the Dunkl setting which are defined by the wavelet-type decomposition with norms and the analogous atomic decomposition of the Hardy spaces.

Chuhan Sun、Zhiming Wang

数学

Chuhan Sun,Zhiming Wang.Triebel-Lizorkin spaces in Dunkl setting[EB/OL].(2025-06-27)[2025-07-20].https://arxiv.org/abs/2408.05227.点此复制

评论