Fourier restriction and well-approximable numbers
Fourier restriction and well-approximable numbers
We use a deterministic construction to prove the optimality of the exponent in the Mockenhaupt-Mitsis-Bak-Seeger Fourier restriction theorem for dimension $d=1$ and parameter range $0 < a,b \leq d$ and $b\leq 2a$. Previous constructions by Hambrook and Åaba \cite{HL2013} and Chen \cite{chen} required randomness and only covered the range $0 < b \leq a \leq d=1$. We also resolve a question of Seeger \cite{seeger-private} about the Fourier restriction inequality on the sets of well-approximable numbers.
Robert Fraser、Kyle Hambrook、Donggeun Ryou
数学
Robert Fraser,Kyle Hambrook,Donggeun Ryou.Fourier restriction and well-approximable numbers[EB/OL].(2025-06-25)[2025-07-20].https://arxiv.org/abs/2311.09463.点此复制
评论