一类具有普通饱和接触率的SEIR传染病模型的全局稳定性
Global stability of an SEIR epidemic model with general
这篇文章考虑了具有常数输入,因病死亡和潜伏期的SEIR 传染病模型.发生率属于饱和接触率的形式.它的全局稳定性是完全被它的基本再生数R0决定的.如果RO<=1,无病平衡点是全局渐进稳定的,并且疾病将消失.如果R0>1,唯一的正平衡点在可行区域内部是渐进稳定的,并且疾病将持续在正平衡点.
he SEIR epidemic model studied here includes incorporates constant recruitment, disease-caused death and disease latency. The incidence term is of the saturating contact rate form. A threshold R0 is identified which determineds the outcome of the disease; if R0 <=1, the disease-free equilibrium is globally stable and disease dies out, while if R0 > 1, a unique endemic equilibrium is globally asymptotically stable in the interior of the feasible region and the disease will persist at the endemic equilibrium if it is initially present.
李维德、王国锋
基础医学
传染病模型,全局稳定性,潜伏期复合矩阵
Epidemic modelsGlobal stabilityLatent period
李维德,王国锋.一类具有普通饱和接触率的SEIR传染病模型的全局稳定性[EB/OL].(2008-03-27)[2025-07-19].http://www.paper.edu.cn/releasepaper/content/200803-849.点此复制
评论