Infinite families of harmonic self-maps of ellipsoids in all dimensions
Infinite families of harmonic self-maps of ellipsoids in all dimensions
We prove that for given $k\in\mathbb{N}$, $k\geq 3$, $d\in\mathbb{N}$ and each $a\in\mathbb{R}^{*}$ with \begin{align*} a^2<4d (d+k-2)(k-2)^{-2} \end{align*} the ellipsoid $E_a:=\{x\in\mathbb{R}^k\,\lvert\,a^{-2}x_1^2+x_2^2+\ldots+x_k^2=1\}$ admits infinitely many harmonic self-maps.
Volker Branding、Anna Siffert
数学
Volker Branding,Anna Siffert.Infinite families of harmonic self-maps of ellipsoids in all dimensions[EB/OL].(2025-07-10)[2025-07-20].https://arxiv.org/abs/2210.17240.点此复制
评论