|国家预印本平台
首页|具有记忆扩散和成熟时滞的反应扩散对流模型的Hopf分支

具有记忆扩散和成熟时滞的反应扩散对流模型的Hopf分支

Hopf bifurcation in a reaction-diffusion-advection model with memory based diffusion and maturation delays

中文摘要英文摘要

本文研究了一类具有记忆效应和成熟时滞的齐次Dirichlet边界条件下的反应扩散对流模型. 首先, 建立了一个非常数正稳态的存在性和稳定性, 其次, 通过分析相应的特征方程研究了该系统在稳态附近的Hopf分支, 并发现当成熟延迟项占优时, 基于记忆的扩散有利于正稳态的稳定性. 最后, 得到了当对流速率在一定范围内时, 对流的引入在一定程度上减缓了Hopf分岔的发生.

reaction-diffusion-advection model with memory effect and maturation delay subject to homogeneous Dirichlet boundary conditions is investigated in this paper. Firstly, the existence and stability of a non-constant positive steady state is established, Then, the Hopf bifurcation near the steady state was investigated by analyzing the corresponding characteristic equation. It is found that the memory-based diffusion is favorable for the stability of the positive steady state when the maturation delay term is dominant. Finally, it is obtained that when the advection rate is within a certain range, the introduction of advection slows down the occurrence of Hopf bifurcation to a certain extent.

马鑫玉、王小利

数学

应用数学 反应-扩散-对流 记忆效应 成熟时滞 Hopf分支.

pplied mathematics Reaction-diffusion-advection Memory effect Maturation delay Hopf bifurcation.

马鑫玉,王小利.具有记忆扩散和成熟时滞的反应扩散对流模型的Hopf分支[EB/OL].(2024-11-22)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202411-49.点此复制

评论