|国家预印本平台
首页|CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules

CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules

CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules

来源:Arxiv_logoArxiv
英文摘要

Fire incidents in urban and forested areas pose serious threats,underscoring the need for more effective detection technologies. To address these challenges, we present CCi-YOLOv8n, an enhanced YOLOv8 model with targeted improvements for detecting small fires and smoke. The model integrates the CARAFE up-sampling operator and a context-guided module to reduce information loss during up-sampling and down-sampling, thereby retaining richer feature representations. Additionally, an inverted residual mobile block enhanced C2f module captures small targets and fine smoke patterns, a critical improvement over the original model's detection capacity.For validation, we introduce Web-Fire, a dataset curated for fire and smoke detection across diverse real-world scenarios. Experimental results indicate that CCi-YOLOv8n outperforms YOLOv8n in detection precision, confirming its effectiveness for robust fire detection tasks.

Ping Lan、Kunwei Lv、Ruobing Wu、Suyang Chen

灾害、灾害防治

Ping Lan,Kunwei Lv,Ruobing Wu,Suyang Chen.CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules[EB/OL].(2025-07-04)[2025-07-21].https://arxiv.org/abs/2411.11011.点此复制

评论