|国家预印本平台
首页|HyperINF: Unleashing the HyperPower of the Schulz's Method for Data Influence Estimation

HyperINF: Unleashing the HyperPower of the Schulz's Method for Data Influence Estimation

HyperINF: Unleashing the HyperPower of the Schulz's Method for Data Influence Estimation

来源:Arxiv_logoArxiv
英文摘要

Influence functions provide a principled method to assess the contribution of individual training samples to a specific target. Yet, their high computational costs limit their applications on large-scale models and datasets. Existing methods proposed for influence function approximation have significantly reduced the computational overheads. However, they mostly suffer from inaccurate estimation due to the lack of strong convergence guarantees from the algorithm. The family of hyperpower methods are well-known for their rigorous convergence guarantees on matrix inverse approximation, while the matrix multiplication operation can involve intractable memory and computation costs on large-scale models. We propose HyperINF, an efficient and accurate influence function approximation method which leverages the hyperpower method, specifically Schulz's iterative algorithm. To deal with the computation-intensive matrix multiplication, we incorporate the generalized fisher information (GFIM) as a low-rank approximation of the Hessian matrix, which reduces the memory and computation overheads to constant costs independent of ranks on LoRA-tuned models. We first demonstrate the superior accuracy and stability of HyperINF compared to other baselines through a synthetic convergence simulation for matrix inversion. We further validate the efficacy of HyperINF through extensive real-world data attribution tasks, including mislabeled data detection and data selection for LLM and VLM fine-tuning. On LoRA-tuned models, HyperINF achieves superior downstream performance with minimal memory and computational overhead, while other baselines suffer from significant degradation. Our codebase is available at https://github.com/Blackzxy/HyperINF.

Simin Fan、Martin Jaggi、Xinyu Zhou

计算技术、计算机技术

Simin Fan,Martin Jaggi,Xinyu Zhou.HyperINF: Unleashing the HyperPower of the Schulz's Method for Data Influence Estimation[EB/OL].(2025-06-25)[2025-08-02].https://arxiv.org/abs/2410.05090.点此复制

评论