|国家预印本平台
首页|Lusztig sheaves and integrable highest weight modules in symmetrizable cases

Lusztig sheaves and integrable highest weight modules in symmetrizable cases

Lusztig sheaves and integrable highest weight modules in symmetrizable cases

来源:Arxiv_logoArxiv
英文摘要

The present paper continues the work of [10] and [6]. For any symmetrizable generalized Cartan Matrix $C$ and the corresponding quantum group $\mathbf{U}$, we consider the associated quiver $Q$ with an admissible automorphism $a$. We construct the category $\widetilde{\mathcal{Q}/\mathcal{N}}$ of the localization of Lusztig sheaves for the quiver with the automorphism of corresponding framed quiver and 2-framed quiver. Their Grothendieck groups give realizations of integrable highest weight module $L(λ)$ and the tensor product of integrable highest weights $\mathbf{U}-$module $L(λ_1)\otimes L(λ_2)$, and modulo the traceless ones Lusztig sheaves provide the (signed) canonical basis of $L(λ)$ and $L(λ_1)\otimes L(λ_2)$. As an application, the symmetrizable crystal structures on Nakajima's quiver/tensor product varieties and Lusztig's nilpotent varieties of preprojective algebras are deduced.

Yixin Lan、Yumeng Wu、Jie Xiao

数学

Yixin Lan,Yumeng Wu,Jie Xiao.Lusztig sheaves and integrable highest weight modules in symmetrizable cases[EB/OL].(2025-07-06)[2025-07-17].https://arxiv.org/abs/2411.09188.点此复制

评论