基于地理探测器的鄂尔多斯干旱时空变化驱动因素分析
干旱是鄂尔多斯市最严重的自然灾害之一,频发的干旱加剧土地荒漠化进程、导致草场植被退化。因此,研究该地区干旱对科学防旱抗旱、沙漠化治理与生态建设具有重要意义。基于干旱严重程度指数(Drought Severity Index,DSI),探究干旱的时空动态、变化趋势并利用地理探测器模型分析DSI空间分异性的驱动因子。结果表明:(1)鄂尔多斯蒸散发(Evapotranspiration,ET)和归一化植被指数(Normalized Difference Vegetation Index,NDVI)均呈显著增加趋势(P<0.05),增加速率依次为:4.291 mm·a-1和0.004 a-1。(2)DSI年际变化整体也呈显著上升趋势,趋势变化速率为0.089。ET和NDVI呈现出西南低、东北高的空间格局,潜在蒸散发(PotentialEvapotranspiration,PET)呈现出西南高、东北低的空间格局,而DSI呈现西部干旱东部湿润的分布特征。(3)DSI的空间分异主要受气温、降水、土地利用类型、土壤类型和高程(Digital Elevation Model,DEM)等5个因子影响,是鄂尔多斯干旱的主要驱动因素;在多因子交互作用下,气温和 DEM、降水和 DEM、日照时数和 DEM、相对湿度与 DEM 共同驱动干旱,其中降水(0.156)∩DEM(0.248)对干旱发生的影响力最强,q达到0.389。该研究结果可为鄂尔多斯生态环境保护和抗旱管理措施制定提供科学依据。
rought is a significant natural disaster in Ordos, exacerbating desertification and degrading grassland vegetation. Therefore, studying drought in this region is crucial for effective drought prevention, desertification control, and ecological restoration. In this study, we explored the spatiotemporal dynamics and trends of drought and analyzed the driving factors behind the spatial differentiation of DSI using a geographic detector model. The results show that evapotranspiration (ET) and the normalized difference vegetation index (NDVI) in the Ordos exhibit a significant increasing trend (P<0.05), with rates of 4.291 mma-1 for ET and 0.004 a-1 for NDVI. Additionally, the interannual variation of DSI also showed a significant increase, with a trend change rate of 0.089. ET and NDVI showed a spatial pattern, with lower values in the southwest and higher values in the northeast. Conversely, PET showed a spatial pattern of higher values in the southwest and lower values in the northeast. The DSI showed a dry spatial pattern in the west and a wet pattern in the east. The spatial differentiation of the DSI wasprimarily affected by five factors, such as air temperature, precipitation, land use type, soil type, and the digital elevation model (DEM), with q value exceeding 0.15, indicating these are the main driving factors of drought in the Ordos. Multiple factors interact to drive drought in Ordos, with four key combinationstemperature and DEM, precipitation and DEM, sunshine duration and DEM, and relative humidity and DEM. Among these, the combination of precipitation (0.156) and DEM (0.248) exerted the strongest influence on drought occurrence,with a q value of 0.389. This study can provide a scientific basis for ecological protection and drought management measures in the region.
于向前、吴英杰、黎明扬、王思楠、王宏宙、马小茗、王 飞、张雯颖
灾害、灾害防治自然地理学环境科学理论
鄂尔多斯SI干旱指数地理探测器时空变化驱动因素
OrdosDSI drought indexgeographical detectorspatial temporal changedriving factor
于向前,吴英杰,黎明扬,王思楠,王宏宙,马小茗,王 飞,张雯颖.基于地理探测器的鄂尔多斯干旱时空变化驱动因素分析[EB/OL].(2024-12-16)[2025-06-01].https://chinaxiv.org/abs/202412.00192.点此复制
评论