|国家预印本平台
首页|A Codimension Two Approach to the $\mathbb{S}^1$-Stability Conjecture

A Codimension Two Approach to the $\mathbb{S}^1$-Stability Conjecture

A Codimension Two Approach to the $\mathbb{S}^1$-Stability Conjecture

来源:Arxiv_logoArxiv
英文摘要

J. Rosenberg's $\mathbb{S}^1$-stability conjecture states that a closed oriented manifold $X$ admits a positive scalar curvature metric iff $X\times \mathbb{S}^1$ admits a positive scalar curvature metric $h$. As pointed out by J. Rosenberg and others, there are known counterexamples in dimension four. We prove this conjecture whenever $h$ satisfies a geometric bound which measures the discrepancy between $\partial_θ\in T\mathbb{S}^1$ and the normal vector field to $X\times \{P\}$, for a fixed $P\in \mathbb{S}^1.$

Steven Rosenberg、Jie Xu

数学

Steven Rosenberg,Jie Xu.A Codimension Two Approach to the $\mathbb{S}^1$-Stability Conjecture[EB/OL].(2025-07-01)[2025-07-16].https://arxiv.org/abs/2412.12479.点此复制

评论