首页|Global Lipschitz and Sobolev estimates for the Monge-Ampère eigenfunctions of general bounded convex domains
Global Lipschitz and Sobolev estimates for the Monge-Ampère eigenfunctions of general bounded convex domains
Global Lipschitz and Sobolev estimates for the Monge-Ampère eigenfunctions of general bounded convex domains
We show that the Monge-Ampère eigenfunctions of general bounded convex domains are globally Lipschitz. The same result holds for convex solutions to degenerate Monge-Ampère equations of the form $\det D^2 u =M|u|^p$ with zero boundary condition on general bounded convex domains in ${\mathbb R}^n$ within the sharp threshold $p>n-2$. As a consequence, we obtain global $W^{2, 1}$ estimates for these solutions.
Nam Q. Le
数学
Nam Q. Le.Global Lipschitz and Sobolev estimates for the Monge-Ampère eigenfunctions of general bounded convex domains[EB/OL].(2025-07-15)[2025-07-22].https://arxiv.org/abs/2501.01358.点此复制
评论