Irredundant bases for soluble groups
Irredundant bases for soluble groups
Let $Î$ be a finite set and $G$ be a subgroup of $\operatorname{Sym}(Î)$. An irredundant base for $G$ is a sequence of points of $Î$ yielding a strictly descending chain of pointwise stabilisers, terminating with the trivial group. Suppose that $G$ is primitive and soluble. We determine asymptotically tight bounds for the maximum length of an irredundant base for $G$. Moreover, we disprove a conjecture of Seress on the maximum length of an irredundant base constructed by the natural greedy algorithm, and prove Cameron's Greedy Conjecture for $|G|$ odd.
Sofia Brenner、Coen del Valle、Colva M. Roney-Dougal
数学
Sofia Brenner,Coen del Valle,Colva M. Roney-Dougal.Irredundant bases for soluble groups[EB/OL].(2025-06-24)[2025-07-16].https://arxiv.org/abs/2501.03003.点此复制
评论