|国家预印本平台
首页|一类(2+1)维变系数非线性薛定谔方程的高阶怪波解、呼吸子解和多孤子解研究

一类(2+1)维变系数非线性薛定谔方程的高阶怪波解、呼吸子解和多孤子解研究

High-order rogue wave, breather and multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schr\"{o}dinger equation

中文摘要英文摘要

本文主要研究了一类(2+1)维变系数非线性薛定谔方程的呼吸子解、怪波解和多孤子解。通过方程对应的Lax对给出了N阶达布变换,进而得到方程的多孤子解。同时,以e的指数函数作为种子解通过达布变换和推广的达布变换得到方程的呼吸子解和高阶怪波解。除此之外,利用解的图像分析了参数对于解性质的影响。

In this paper, we investigate breather, rogue wave and multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schr\"{o}dinger equation. The $N$-fold Dourboux transformation of the (2+1)-dimensional variable-coefficient nonlinear Schr\"{o}dinger equation is constructed via the Lax pair, from which the multi-soliton solutions is generalized. Meanwhile, we obtain the breather and high-order rogue wave solutions of (2+1)-dimensional variable-coefficient nonlinear Schr\"{o}dinger equation by the Darboux transformation and the generalized Darboux transfotmation from exponential seed solutions. Furthermore, we plot the graph of breather, high-order rogue wave and multi-soliton solutions and discuss in detail the propagation property of those solutions, which show some interesting structures.

单文锐、崔王曦

物理学

数学非线性薛定谔方程达布变换推广的达布变换呼吸子解高阶怪波解

MathNonlinear Schr\"{o}dinger EquationsDourboux TransformationGeneralized Darboux TransformationBreathersHigh-order Rogue waves

单文锐,崔王曦.一类(2+1)维变系数非线性薛定谔方程的高阶怪波解、呼吸子解和多孤子解研究[EB/OL].(2025-01-10)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202501-5.点此复制

评论