排基于机器学习的电子资源评价方法研究
Research on the Evaluation Method of Electronic Resources Based on Machine Learning
【目的/意义】:建立科学、高效的电子资源评价方法是高校图书馆资源建设与提升服务质量的重要工作内容。与传统电子资源评价方法相比机器学习模型评估预测结果更加准确、高效,指导电子资源结构优化更具客观性。【方法/过程】:以外文电子资源为研究对象,建立外文期刊全文库和文摘库两种不同类型评价指标体系。采集DRAA网站单馆统计报告和评价中心数据,应用RF(随机森林)进行特征变量重要性排序,比较构建机器学习模型,采用留一交叉验证对电子资源评价预测并进行精度比较确保模型的最优性能。【结果/结论】:机器学习模型对电子资源评价预测比传统方法更加准确和高效,可以为图书馆做出基于数据的决策,有助于图书馆优化电子资源配置。
Purpose/Significance : Establishing a scientific and efficient electronic resource evaluation method is an important task for the construction of university library resources and the improvement of service quality. Compared with traditional electronic resource evaluation methods, machine learning models provide more accurate and efficient evaluation and prediction results, and guide more objective optimization of electronic resource structure. [Method/Process]: Taking foreign electronic resources as the research object, establish two different types of evaluation index systems: foreign journal full-text library and abstract library. Collect DRAA website single library statistical reports and evaluation center data, apply RF (Random Forest) to rank the importance of feature variables, compare and construct machine learning models, use leave one cross validation to predict electronic resource evaluation, and compare the accuracy to ensure the optimal performance of the model. Result/Conclusion : Machine learning models are more accurate and efficient in predicting the evaluation of electronic resources than traditional methods. They can make data-driven decisions for libraries and help optimize the allocation of electronic resources.
高利、王珈尧、赵颖慧
电子技术应用
机器学习图书馆电子资源评价指标
Machine learninglibraryElectronic resourcesEvaluation indicators
高利,王珈尧,赵颖慧.排基于机器学习的电子资源评价方法研究[EB/OL].(2024-11-04)[2025-08-23].https://chinaxiv.org/abs/202411.00068.点此复制
评论