|国家预印本平台
首页|运动员动作预期的信息整合计算建模及机理研究进展

运动员动作预期的信息整合计算建模及机理研究进展

Research Progress on Computational Modeling and Mechanisms of Information Integration in Athlete Action Anticipation

中文摘要英文摘要

高水平运动员需整合情境先验信息与运动学信息,以做出准确的动作判断。本文梳理了信息整合模型及其神经机制的相关研究。结果表明,运动员根据信息源的可靠性调整其对动作预期的贡献权重。部分可观察马尔可夫决策模型提供了估计运动员在动作预期过程中对不同信息源赋予权重的数学框架。此外,对动作预期过程中信息整合的大脑加工过程仍需深入研究。我们推测,CNV波幅、theta振荡、pMTG和DLPFC激活是相关神经活动的关键信号。

Elite athletes need to integrate contextual prior information with kinematic information to make accurate action anticipation. This paper reviews research on action anticipation based on the information integration model and its neural mechanisms. Results indicate that athletes adjust the weight of each information sources contribution to action anticipation based on its reliability. The partially observable Markov decision process model provides a mathematical framework for estimating the weight athletes assign to different information sources during action anticipation. Furthermore, the brain processes involved in integrating these information sources during action anticipation require further exploration. We hypothesize that CNV amplitude, theta oscillations, pMTG and DLPFC activation are key neural signals.

栾梦恺、周成林、黄钰晶、王丹蕾、丁蕊

10.12074/202410.00090

体育科学、科学研究

运动预期信息整合计算建模冲突监控神经机制

action anticipationinformation integrationcomputational modelingconflict monitoringneural mechanisms

栾梦恺,周成林,黄钰晶,王丹蕾,丁蕊.运动员动作预期的信息整合计算建模及机理研究进展[EB/OL].(2024-10-15)[2025-08-16].https://chinaxiv.org/abs/202410.00090.点此复制

评论