融合大语言模型与多模态特征的古文命名实体识别
Named Entity Recognition for Ancient Chinese Texts Using LLMs and Multimodal Features
目的/意义] 运用命名实体识别技术深入探索古籍文献,推进中文古籍数字化,便于提取和分析重要信息,提升文化遗产的获取与理解,弘扬传统文化。[方法/过程]提出融合大语言模型与多模态特征的古文命名实体识别方法。首先,利用大语言模型进行数据扩充,生成更丰富的样本;然后,使用滑动窗口将文本分割为固定长度的子序列,并将文本子序列输入编码层,得到文本的特征表示;通过卷积神经网络(CNN)提取字形的局部特征,再利用改进的迭代扩张卷积神经网络(IDCNN)提取长距离特征,从而获得字形的全局信息。最后,将文本特征和字形特征在特征感知层进行拼接,形成每个字的综合表示,将拼接后的综合特征传递到CRF层进行序列标注,完成实体预测。以《左传》和CHED_NER为研究语料,构建人名、地名、时间等命名实体识别任务。[结果/结论]实验结果表明,融合大语言模型与多模态特征的古文命名实体识别方法,相比主流的BERT-BiLSTM-CRF方法,F1值分别提升13.32%和1.03%。融合大语言模型与多模态特征的古文命名实体识别方法,能够精准地实现对古籍文本的命名实体识别。
Purpose/Significance]This study aims to explore ancient Chinese texts using Named Entity Recognition (NER) technology, promote the digitization of ancient Chinese texts, facilitate the extraction and analysis of important information, enhance the acquisition and understanding of cultural heritage, and promote traditional culture. [Method/Process]We propose a method for NER in ancient Chinese texts that integrates large language models with multimodal features. First, we utilize a large language model for data augmentation to generate richer samples. Then, we segment the text into fixed-length subsequences using a sliding window approach and input these subsequences into an encoding layer to obtain feature representations of the text. Convolutional Neural Networks (CNN) are employed to extract local features of the character shapes, and an improved Iterative Dilated Convolutional Neural Network (IDCNN) is used to capture long-range features, thereby obtaining global information of the character shapes. Finally, the text features and shape features are concatenated at a feature perception layer to form a comprehensive representation for each character, and the concatenated comprehensive features are passed to a CRF layer for sequence labeling to complete entity prediction. Using "Zuo Zhuan" and CHED_NER as the research corpus, we constructed tasks for identifying named entities such as personal names, geographical names, and temporal expressions. [Result/Conclusion]Experimental results show that the ancient Chinese text named entity recognition method that integrates large language models and multimodal features has improved F1 values by 13.32% and 1.03% respectively compared to the mainstream BERT-BiLSTM-CRF method.The proposed method for NER in ancient Chinese texts, which integrates large language models with multimodal features, can accurately achieve named entity recognition in ancient Chinese texts.
李丰毅、孟佳娜、赵迪、王博林、刘爽
汉语信息传播、知识传播科学、科学研究
古文实体识别迭代扩张卷积神经网络大语言模型特征融合
ncient Chinese TextsEntity RecognitionIterative Dilated Convolutional Neural NetworkLarge Language ModelFeature Fusion
李丰毅,孟佳娜,赵迪,王博林,刘爽.融合大语言模型与多模态特征的古文命名实体识别[EB/OL].(2024-11-20)[2025-08-15].https://chinaxiv.org/abs/202411.00196.点此复制
评论