|国家预印本平台
首页|Utilizing Large Language Models to Analyze PSR.exe Recorded Input for Computer Use

Utilizing Large Language Models to Analyze PSR.exe Recorded Input for Computer Use

Utilizing Large Language Models to Analyze PSR.exe Recorded Input for Computer Use

中文摘要英文摘要

大型语言模型 (LLM) 的快速发展为复杂工作流程的自动化开辟了新领域。本文探讨了一种利用大型语言模型 (LLM) 解析和解释 PSR.exe(一种用于捕获用户鼠标和键盘操作的工具)记录的数据来模拟计算机使用的创新方法。我们提出了一种提取、分析和复制 MHT 文件中记录的用户交互的方法。通过解码屏幕截图和提取动作序列,我们旨在开发一个自动化流程,使应用程序能够有效地模拟用户操作。该工作流结合了 BeautifulSoup(用于 XML 解析)、base64(用于图像解码)和 LLM(用于语义分析)。结果表明,我们的方法轻量级、多功能,能够确保精度和适应性,同时减少对外部跟踪工具的依赖。

he rapid advancement of Large Language Models (LLMs) has opened new frontiers in automating complex workflows. This paper explores an innovative approach to computer use simulation by leveraging Large Language Models (LLMs) to parse and interpret data recorded by PSR.exe, a tool designed to capture users mouse and keyboard operations. We propose a method to extract, analyze, and replicate user interactions recorded in MHT files. By decoding screenshots and extracting action sequences, we aim to develop an automated process that enables applications to emulate user operations effectively. The workflow combines BeautifulSoup for XML parsing, base64 for image decoding, and LLMs for semantic analysis. Results show that our method is lightweight, versatile, and capable of ensuring precision and adaptability while reducing dependency on external tracking tools.

10.12074/202501.00152

信息技术与安全科学

LLMPSR.execomputer useworkflow

LLMPSR.execomputer useworkflow

.Utilizing Large Language Models to Analyze PSR.exe Recorded Input for Computer Use[EB/OL].(2025-01-14)[2025-02-05].https://chinaxiv.org/abs/202501.00152.点此复制

评论