Irreducibility results for equivariant $\mathcal{D}$-modules on rigid analytic spaces
Irreducibility results for equivariant $\mathcal{D}$-modules on rigid analytic spaces
We prove a general irreducibility result for geometrically induced coadmissible equivariant $\mathcal{D}$-modules on rigid analytic spaces. As an application, we geometrically reprove the irreducibility of certain locally analytic representations previously constructed by Orlik-Strauch.
Tobias Schmidt、Konstantin Ardakov
数学
Tobias Schmidt,Konstantin Ardakov.Irreducibility results for equivariant $\mathcal{D}$-modules on rigid analytic spaces[EB/OL].(2025-01-13)[2025-08-30].https://arxiv.org/abs/2501.07667.点此复制
评论