Spectral radius and rainbow $k$-factors of graphs
Spectral radius and rainbow $k$-factors of graphs
Let $\mathcal{G}=\{G_1,\ldots, G_{\frac{kn}{2}}\}$ be a set of graphs on the same vertex set $V=\{1,\dots,n\}$ where $k\cdot n$ is even. We say $\mathcal{G}$ admits a rainbow $k$-factor if there exists a $k$-regular graph $F$ on the vertex set $V$ such that all edges of $F$ are from different members of $\mathcal{G}$. In this paper, we show a sufficient spectral condition for the existence of a rainbow $k$-factor for $k\geq 2$, which is that if $Ï(G_i)\geqÏ(K_{k-1}\vee(K_1\cup K_{n-k}))$ for each $G_i\in \mathcal{G}$, then $\mathcal{G}$ admits a rainbow $k$-factor unless $G_1=G_2=\cdots=G_{\frac{kn}{2}}\cong K_{k-1}\vee(K_1\cup K_{n-k})$.
Zhiyuan Zhang、Liwen Zhang
数学
Zhiyuan Zhang,Liwen Zhang.Spectral radius and rainbow $k$-factors of graphs[EB/OL].(2025-08-07)[2025-08-25].https://arxiv.org/abs/2501.08162.点此复制
评论