基于张量分解的5G室分场景下的定位算法
ensor Decomposition-Based Indoor Positioning in 5G Passive Distributed Antenna Systems
无源分布式天线系统(DAS)将广泛应用于基于5G的室内定位场景。然而,DAS的模拟特性导致接收到的信号是多个天线信号的叠加,这对精确的室内定位带来了重大挑战。本文提出了一种基于张量分解的5G无源DAS系统下的位置估计算法,该算法通过有效区分多个天线分量,提高了定位精度。具体地说,利用接收信号波形的稀疏特征构建低秩张量模型,然后采用块项分解(BTD)分离混合多路径天线分量。接下来,根据张量分解的结果来估计到达时间(TOA)。最后,为了消除TOA中的时间同步误差采用到达时间差(TDOA)算法进行位置估计。仿真结果表明,该室内定位方法在较低的计算复杂度下实现了准确的定位性能。
Passive distributed antenna system (DAS) is expected to be used in 5G-based indoor positioning scenarios. However, the analog nature of DAS results in the received signal being a superposition of multiple antenna signals, posing significant challenges for accurate indoor positioning. In this paper, we proposed a tensor decomposition-based position estimation algorithm for 5G passive DAS system, which enhances positioning accuracy by effectively distinguishing the multiple antenna components. Specifically, we exploit the sparse characteristics of the received signal waveform to construct a low-rank tensor model, and then Block term decomposition (BTD) is employed to separate mixed multipath antenna components. Next, we estimate the time of arrival (TOA) based on the result of tensor decomposition. Finally, to eliminate the time synchronization error in TOA, we employ the time difference of arrival (TDOA) algorithm for location estimation. Simulation results show that our proposed indoor positioning method achieves accurate positioning performance with lower Computational complexity.
董洁、初星河、胡智群、路兆铭、温向明
信息技术与安全科学
信号与信息处理张量分解到达时间估计定位
signal and information processingtensor decompositiontime of arrival estimationlocalization
董洁,初星河,胡智群,路兆铭,温向明.基于张量分解的5G室分场景下的定位算法[EB/OL].(2025-01-23)[2025-02-05].http://www.paper.edu.cn/releasepaper/content/202501-41.点此复制
评论