家庭监控场景下多阶段图像生成算法框架的设计与实现
esign and Implementation of a Multi-Stage Image Generation for Home Monitoring Applications
家庭摄像头的角色正在从传统监控工具向智能家居生态中的多功能节点演进。本文提出了一种面向家庭场景的多阶段图像生成系统框架,通过模块化设计和深度学习技术,实现高质量的动漫风格化转换。该框架包含两个核心实现机制:并行计算框架和多模型协同推理机制。并行计算框架通过基于优先级的异构资源调度和动态批处理优化,实现计算资源的高效分配;多模型协同推理机制则整合了状态监控、模型调度和质量评估三个核心组件,确保多个专业模型的无缝协作。在具体实现中,系统采用六层架构设计,包括用户交互层、任务处理层、图像前处理层、核心生成层、图像后处理层等,通过标准化接口实现模块间的高效协同。系统在预处理阶段集成了超分辨率、弱光增强、边缘检测等多个优化模块,为生成阶段提供高质量的特征输入;在生成阶段,通过整合Stable Diffusion、ControlNet和LoRA等技术,实现可定制的风格转换。该方法不仅实现了高质量图像生成,同时为家庭摄像头影像功能的创新提供了研究思路和技术支持,为未来智能家庭应用的开发奠定了基础。
he role of home cameras is evolving from traditional surveillance tools into multifunctional nodes within smart home ecosystems. This paper proposes a multi-stage image generation system framework for home scenarios, implementing high-quality anime-style transformation through modular design and deep learning technology. The framework comprises two core mechanisms: a parallel computing framework and a multi-model collaborative inference mechanism. The parallel computing framework facilitates efficient resource allocation through priority-based heterogeneous resource scheduling and dynamic batch processing optimization, while the multi-model collaborative inference mechanism integrates three core components - state monitoring, model scheduling, and quality assessment - to ensure seamless model collaboration. In its implementation, the system adopts a six-layer architecture consisting of user interaction, task processing, image preprocessing, core generation, and post-processing layers, connected through standardized interfaces. The preprocessing stage incorporates multiple optimization modules, including super-resolution, low-light enhancement, and edge detection, generating high-quality input features for the generation phase. The generation stage enables customizable style transformation by integrating Stable Diffusion, ControlNet, and LoRA technologies. This approach not only delivers superior image generation results but also provides research insights and technical support for innovating home camera imaging functions, paving the way for future smart home applications.
刘兴鹏、杨震
信息技术与安全科学
计算机视觉家庭监控图像生成动态场景适配
omputer Vision Home Monitoring Image Generation Dynamic Scene Adaptation
刘兴鹏,杨震.家庭监控场景下多阶段图像生成算法框架的设计与实现[EB/OL].(2025-01-23)[2025-02-05].http://www.paper.edu.cn/releasepaper/content/202501-40.点此复制
评论