基于自适应探索和残差融合的会话推荐方法
Session Recommendation Method Based on Adaptive Exploration and Residual Fusion
本文提出了一种基于自适应探索和残差融合的方法(AERF),旨在解决会话推荐系统中的长尾分布问题。AERF模型通过全局物品图构建和自适应游走机制,从全局范围内为目标物品生成多条高质量游走序列,并自适应地筛选与目标物品相关的上下文信息,从而有效补充长尾物品的表示。此外,模型引入了残差融合机制,将针对不同物品类别训练得到的分支预测结果以残差形式与主分支预测进行融合,有效提高了对长尾物品的推荐效果。实验结果表明,与现有主流方法相比,AERF模型在多个真实数据集上的推荐性能得到了显著提升,同时消融实验验证了自适应探索机制和残差融合机制的有效性。这种方法在保证头部物品预测准确率的同时,显著增强了长尾物品的推荐效果,为提升会话推荐系统的多样性和公平性提供了一种新的解决方案。
his paper proposes an Adaptive Exploration and Residual Fusion (AERF) method aimed at addressing the long-tail distribution problem in session-based recommendation systems. The AERF model constructs a global item graph and employs an adaptive random walk mechanism to generate multiple high-quality walk sequences for the target item from a global perspective, adaptively selecting contextual information relevant to the target item to effectively enhance the representation of long-tail items. Additionally, the model introduces a residual fusion mechanism, where the branch predictions trained for different item categories are fused with the main branch predictions as residuals, effectively improving the recommendation performance for long-tail items. Experimental results show that, compared to existing state-of-the-art methods, the AERF model achieves significant performance improvements on multiple real-world datasets, while ablation studies validate the effectiveness of the adaptive exploration mechanism and residual fusion mechanism. This method enhances the diversity and fairness of session-based recommendation systems by significantly improving the recommendation performance for long-tail items without compromising the prediction accuracy of head items.
张佳鑫、王玉龙
信息技术与安全科学
会话型推荐算法 长尾分布
Session-based Recommendation Long-tailed Distribution
张佳鑫,王玉龙.基于自适应探索和残差融合的会话推荐方法[EB/OL].(2025-01-23)[2025-02-05].http://www.paper.edu.cn/releasepaper/content/202501-38.点此复制
评论