$\otimes$-Frobenius functors and exact module categories
$\otimes$-Frobenius functors and exact module categories
We call a tensor functor $F:\mathcal{C}\rightarrow\mathcal{D}$ between finite tensor categories $\otimes$-Frobenius if the left and right adjoints of $F$ are isomorphic as $\mathcal{C}$-bimodule functors. We provide various characterizations of $\otimes$-Frobenius functors such as the unimodularity of the centralizer $\mathcal{Z}({}_F\mathcal{D}_F)$. We analyze the procedure of pulling back actions of tensor categories on module categories along tensor functors, and show that properties like pivotality and unimodularity are preserved if $F$ if $\otimes$-Frobenius. These results allow the transport of Frobenius algebras under certain conditions. We apply the results to internal natural transformations and examples coming from Hopf algebras.
David Jaklitsch、Harshit Yadav
数学
David Jaklitsch,Harshit Yadav.$\otimes$-Frobenius functors and exact module categories[EB/OL].(2025-08-01)[2025-08-18].https://arxiv.org/abs/2501.16978.点此复制
评论