|国家预印本平台
首页|Weighted Pseudorandom Generators for Read-Once Branching Programs via Weighted Pseudorandom Reductions

Weighted Pseudorandom Generators for Read-Once Branching Programs via Weighted Pseudorandom Reductions

Weighted Pseudorandom Generators for Read-Once Branching Programs via Weighted Pseudorandom Reductions

来源:Arxiv_logoArxiv
英文摘要

We study weighted pseudorandom generators (WPRGs) and derandomizations for read-once branching programs (ROBPs). Denote $n$ and $w$ as the length and the width of a ROBP. We have the following results. For standard ROBPs, we give an explicit $\varepsilon$-WPRG with seed length $$O\left(\frac{\log n\log (nw)}{\max\left\{1,\log\log w-\log\log n\right\}}+\log w \left(\log\log\log w-\log\log\max\left\{2,\frac{\log w}{\log \frac{n}{\varepsilon}}\right\}\right)+\log\frac{1}{\varepsilon}\right).$$ For permutation ROBPs with unbounded widths and single accept nodes, we give an explicit $\varepsilon$-WPRG with seed length $$O\left( \log n\left( \log\log n + \sqrt{\log(1/\varepsilon)} \right)+\log(1/\varepsilon)\right). $$ We also give a new Nisan-Zuckerman style derandomization for regular ROBPs with width $w$, length $n = 2^{O(\sqrt{\log w})}$, and multiple accept nodes. We attain optimal space complexity $O(\log w)$ for arbitrary approximation error $\varepsilon = 1/\text{poly} (w)$. All our results are based on iterative weighted pseudorandom reductions, which can iteratively reduce fooling long ROBPs to fooling short ones.

Kuan Cheng、Ruiyang Wu

计算技术、计算机技术

Kuan Cheng,Ruiyang Wu.Weighted Pseudorandom Generators for Read-Once Branching Programs via Weighted Pseudorandom Reductions[EB/OL].(2025-07-21)[2025-08-16].https://arxiv.org/abs/2502.08272.点此复制

评论