Asymptotic Fermat equation of signature $(r, r, p)$ over totally real fields
Asymptotic Fermat equation of signature $(r, r, p)$ over totally real fields
Let $K$ be a totally real number field and $ \mathcal{O}_K$ be the ring of integers of $K$. This manuscript examines the asymptotic solutions of the Fermat equation of signature $(r, r, p)$, specifically $x^r+y^r=dz^p$ over $K$, where $r,p \geq5$ are rational primes and odd $d\in \mathcal{O}_K \setminus \{0\}$. For a certain class of fields $K$, we first prove that the equation $x^r+y^r=dz^p$ has no asymptotic solution $(a,b,c) \in \mathcal{O}_K^3$ with $2 |c$. Then, we study the asymptotic solutions $(a,b,c) \in \mathcal{O}_K^3$ to the equation $x^5+y^5=dz^p$ with $2 \nmid c$. We use the modular method to prove these results.
Somnath Jha、Satyabrat Sahoo
数学
Somnath Jha,Satyabrat Sahoo.Asymptotic Fermat equation of signature $(r, r, p)$ over totally real fields[EB/OL].(2025-07-07)[2025-07-21].https://arxiv.org/abs/2502.09892.点此复制
评论