|国家预印本平台
首页|融合阅读理解与扩散模型的实体识别研究

融合阅读理解与扩散模型的实体识别研究

MDNER:Integrating Machine Reading Comprehension with Diffusion Models for Named Entity Recognition

中文摘要英文摘要

针对电力领域中实体边界模糊和语义复杂的问题,提出一种融合机器阅读理解和扩散模型的命名实体识别方法。通过将命名实体识别任务转化为实体边界的去噪扩散过程,正向扩散过程在每个时间步向实体边界添加高斯噪声,而逆向扩散过程则通过去噪模型逐步细化实体边界,以此来提高边界预测的精确度。为了进一步提升模型性能,逆向扩散过程被框架化为问答任务,通过编码丰富的先验知识增强预测的准确性。实验结果表明,MDNER模型能够有效应对电网领域中的复杂实体边界问题,并在命名实体识别任务中显著提高了识别精度,为电力领域的设备管理和维护决策优化提供了新的技术支持。

o address the issues of ambiguous entity boundaries and complex semantics in the power sector, a named entity recognition method combining machine reading comprehension and diffusion models is proposed.This approach redefines the NER task as a denoising diffusion process for entity boundaries. During the forward diffusion process, Gaussian noise is incrementally added to the entity boundaries at each time step, while the reverse diffusion process employs a denoising model to progressively refine these boundaries, thereby enhancing the precision of boundary prediction. To further improve model performance, the reverse diffusion process is framed as a question-answering task, where encoding rich prior knowledge helps improve prediction accuracy. Experimental results demonstrate that the MDNER model effectively addresses the intricate issues of entity boundary identification in the power domain, significantly improving recognition accuracy in NER tasks, and providing novel technological support for optimizing equipment management and maintenance decision-making in the electricity sector.

闫丹凤、王梦影

语言学计算技术、计算机技术自动化技术、自动化技术设备

人工智能自然语言处理命名实体识别扩散模型

rtificial IntelligenceNatural Language ProcessingNamed Entity Recognitioniffusion Model

闫丹凤,王梦影.融合阅读理解与扩散模型的实体识别研究[EB/OL].(2025-02-19)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202502-43.点此复制

评论