|国家预印本平台
首页|复杂交通监控场景下的轻量级行人目标追踪技术

复杂交通监控场景下的轻量级行人目标追踪技术

Lightweight pedestrian target tracking technology in complex traffic monitoring scenarios

中文摘要英文摘要

本文旨在针对复杂交通监控场景提出一种轻量级行人目标追踪技术,以提高其实时性和准确性。在复杂交通场景中,行人目标的快速移动和频繁遮挡对追踪算法提出了更高的要求。为此,研究采用轻量级特征提取方法,通过优化特征提取网络结构,减少了计算资源消耗,同时还保证了特征的鲁棒性和区分性。结合匀加速卡尔曼滤波器模块,该模块能够有效预测行人目标的运动轨迹,对目标的匀加速运动进行建模,从而在目标丢失或遮挡时提供可靠的预测位置。实验结果表明,所提出的轻量级追踪技术在复杂交通监控场景下表现出良好的实时性和准确性,与原有的DeepSORT算法相比,MOTA提高约2.1%,HOTA提高约1.9%,平均处理速度提升约15帧/秒。该技术在资源受限的监控系统中具有显著优势,能够有效降低计算成本,同时保持较高的追踪性能。综上所述,该轻量级行人目标追踪技术为复杂交通监控场景提供了一种高效、可靠的解决方案,具有广阔的应用前景。

his article aims to propose a lightweight pedestrian target tracking technology for complex traffic monitoring scenarios, in order to improve its real-time performance and accuracy. In complex traffic scenarios, the rapid movement and frequent occlusion of pedestrian targets pose higher requirements for tracking algorithms. Therefore, the study adopts a lightweight feature extraction method, which optimizes the feature extraction network structure to reduce computational resource consumption while ensuring the robustness and discriminability of features. Combined with the uniform acceleration Kalman filter module, this module can effectively predict the motion trajectory of pedestrian targets, model the uniform acceleration motion of targets, and provide reliable predicted positions when targets are lost or obstructed. The experimental results show that the proposed lightweight tracking technology exhibits good real-time performance and accuracy in complex traffic monitoring scenarios. Compared with the original DeepSORT algorithm, MOTA improves by about 2.1%, HOTA improves by about 1.9%, and the average processing speed increases by about 15 frames per second. This technology has significant advantages in resource constrained monitoring systems, effectively reducing computational costs while maintaining high tracking performance. In summary, this lightweight pedestrian target tracking technology provides an efficient and reliable solution for complex traffic monitoring scenarios, with broad application prospects.?????

程渤、刘振鹏

计算技术、计算机技术

计算机视觉轻量级特征提取匀加速卡尔曼滤波复杂交通监控eepSORT

omputer VisionLightweight Feature ExtractionUniform Acceleration Kalman FilterComplex Traffic SurveillanceDeepSORT

程渤,刘振鹏.复杂交通监控场景下的轻量级行人目标追踪技术[EB/OL].(2025-02-19)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202502-54.点此复制

评论