Sums of Powers of Sine and Generalized Bernoulli Polynomials
Sums of Powers of Sine and Generalized Bernoulli Polynomials
We produce formulas for $$\sum_{j=1}^{2^{n-2}}\frac{1}{\sin^s\left(\frac{(2j-1)\pi}{2^n}\right)}$$ in terms of Generalized Bernoulli and Euler polynomials and use one of the formulas to produce a nice integral representation of the Riemann zeta function.
Leon D. Fairbanks
数学
Leon D. Fairbanks.Sums of Powers of Sine and Generalized Bernoulli Polynomials[EB/OL].(2025-02-21)[2025-05-01].https://arxiv.org/abs/2502.15966.点此复制
评论