Constraining all possible Korteweg-de Vries type hierarchies
Constraining all possible Korteweg-de Vries type hierarchies
The Lie algebra of symmetries generated by the left-moving current $j=\partial_-\phi$ in the $2d$ single scalar conformal field theory is infinite dimensional, exhibiting mutually commuting subalgebras. The infinite dimensional mutually commuting subalgebras define integrable deformations of the $2d$ single scalar conformal field theory which preserve the Poisson bracket structure. We study these mutually commuting subalgebras, finding general properties that the generators of such a subalgebra must satisfy. Along the way, we derive constraints on integrable equations of the Korteweg-de Vries type.
Lukas W. Lindwasser
物理学
Lukas W. Lindwasser.Constraining all possible Korteweg-de Vries type hierarchies[EB/OL].(2025-02-25)[2025-04-27].https://arxiv.org/abs/2502.18451.点此复制
评论