|国家预印本平台
首页|External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation

External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation

External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation

来源:Arxiv_logoArxiv
英文摘要

Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.

Xi Liu、Mingfu Liang、Rong Jin、Boyang Liu、Qiuling Suo、Qinghai Zhou、Song Zhou、Laming Chen、Hua Zheng、Zhiyuan Li、Shali Jiang、Jiyan Yang、Xiaozhen Xia、Fan Yang、Yasmine Badr、Ellie Wen、Shuyu Xu、Hansey Chen、Zhengyu Zhang、Jade Nie、Chunzhi Yang、Zhichen Zeng、Weilin Zhang、Xingliang Huang、Qianru Li、Shiquan Wang、Yavuz Yetim、Luoshang Pan、Gaoxiang Liu、Yuxi Hu、Yuzhen Huang、Jackie Xu、Rich Zhu、Xin Zhang、Yiqun Liu、Hang Yin、Yuxin Chen、Buyun Zhang、Xiaoyi Liu、Xingyuan Wang、Wenguang Mao、Zhijing Li、Zhehui Zhou、Qin Huang、Chonglin Sun、Nancy Yu、Shuo Gu、Shupin Mao、Benjamin Au、Jingzheng Qin、Peggy Yao、Evelyn Lyu、Wenjing Lu、Rui Zhang、Wenjun Wang、Jason Rudy、Mengyue Hang、Kai Wang、Yinbin Ma、Shuaiwen Wang、Sihan Zeng、Tongyi Tang、Xiaohan Wei、Longhao Jin、Jamey Zhang、Marcus Chen、Jiayi Xu、Angie Huang、Xihuan Zeng、Chi Zhang、Feifan Gu、Jae-Woo Choi、Bin Gao、Ernest Wang、Lei Zhang、Wen-Yen Chen、Ted Lee、Jay Zha、Yi Meng、Alex Gong、Edison Gao、Alireza Vahdatpour、Yiping Han、Yantao Yao、Toshinari Kureha、Shuo Chang、Musharaf Sultan、John Bocharov、Sagar Chordia、Xiaorui Gan、Peng Sun、Rocky Liu、Bo Long、Wenlin Chen、Santanu Kolay、Huayu Li、Zhengli Zhao、Jared Yang、Qiang Jin、Xian Chen、Amit Anand Amlesahwaram、Lexi Song、Liang Luo、Yuchen Hao、Nan Xiao

计算技术、计算机技术

Xi Liu,Mingfu Liang,Rong Jin,Boyang Liu,Qiuling Suo,Qinghai Zhou,Song Zhou,Laming Chen,Hua Zheng,Zhiyuan Li,Shali Jiang,Jiyan Yang,Xiaozhen Xia,Fan Yang,Yasmine Badr,Ellie Wen,Shuyu Xu,Hansey Chen,Zhengyu Zhang,Jade Nie,Chunzhi Yang,Zhichen Zeng,Weilin Zhang,Xingliang Huang,Qianru Li,Shiquan Wang,Yavuz Yetim,Luoshang Pan,Gaoxiang Liu,Yuxi Hu,Yuzhen Huang,Jackie Xu,Rich Zhu,Xin Zhang,Yiqun Liu,Hang Yin,Yuxin Chen,Buyun Zhang,Xiaoyi Liu,Xingyuan Wang,Wenguang Mao,Zhijing Li,Zhehui Zhou,Qin Huang,Chonglin Sun,Nancy Yu,Shuo Gu,Shupin Mao,Benjamin Au,Jingzheng Qin,Peggy Yao,Evelyn Lyu,Wenjing Lu,Rui Zhang,Wenjun Wang,Jason Rudy,Mengyue Hang,Kai Wang,Yinbin Ma,Shuaiwen Wang,Sihan Zeng,Tongyi Tang,Xiaohan Wei,Longhao Jin,Jamey Zhang,Marcus Chen,Jiayi Xu,Angie Huang,Xihuan Zeng,Chi Zhang,Feifan Gu,Jae-Woo Choi,Bin Gao,Ernest Wang,Lei Zhang,Wen-Yen Chen,Ted Lee,Jay Zha,Yi Meng,Alex Gong,Edison Gao,Alireza Vahdatpour,Yiping Han,Yantao Yao,Toshinari Kureha,Shuo Chang,Musharaf Sultan,John Bocharov,Sagar Chordia,Xiaorui Gan,Peng Sun,Rocky Liu,Bo Long,Wenlin Chen,Santanu Kolay,Huayu Li,Zhengli Zhao,Jared Yang,Qiang Jin,Xian Chen,Amit Anand Amlesahwaram,Lexi Song,Liang Luo,Yuchen Hao,Nan Xiao.External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation[EB/OL].(2025-02-20)[2025-05-23].https://arxiv.org/abs/2502.17494.点此复制

评论