Sharp o-minimality and lattice point counting
Sharp o-minimality and lattice point counting
Let $\Lambda\subseteq\mathbb{R}^n$ be a lattice and let $Z\subseteq\mathbb{R}^{m+n}$ be a definable family in an o-minimal expansion of the real field, $\overline{\mathbb{R}}$. A result of Barroero and Widmer gives sharp estimates for the number of lattice points in the fibers $Z_T=\{x\in\mathbb{R}^n:(T,x)\in Z\}$. Here we give an effective version of this result for a family definable in a sharply o-minimal structure expanding $\overline{\mathbb{R}}$. We also give an effective version of the Barroero and Widmer statement for certain sets definable in $\mathbb{R}_{\exp}$.
Andrew Harrison-Migochi、Raymond McCulloch
数学
Andrew Harrison-Migochi,Raymond McCulloch.Sharp o-minimality and lattice point counting[EB/OL].(2025-03-03)[2025-05-25].https://arxiv.org/abs/2503.01731.点此复制
评论