|国家预印本平台
首页|Bounding minimal log discrepancies of complexity one T-varieties

Bounding minimal log discrepancies of complexity one T-varieties

Bounding minimal log discrepancies of complexity one T-varieties

来源:Arxiv_logoArxiv
英文摘要

The minimal log discrepancy is an invariant that plays an important role in the birational classification of algebraic varieties. Shokurov conjectured that the minimal log discrepancy can always be bounded from above in terms of the dimension of the variety. We prove this conjecture for $T$-varieties of complexity one, adding to previous results on this conjecture which include threefolds, toric varieties, and local complete intersection varieties.

Leandro Meier

数学

Leandro Meier.Bounding minimal log discrepancies of complexity one T-varieties[EB/OL].(2025-03-04)[2025-06-12].https://arxiv.org/abs/2503.02681.点此复制

评论