|国家预印本平台
首页|基于掩码对比学习的序列点云模型局部特征增强方法

基于掩码对比学习的序列点云模型局部特征增强方法

中文摘要英文摘要

近年来,基于序列的点云模型在点云处理领域逐渐展现出巨大的潜力。相比于传统的基于kNN的邻域特征聚合方法,序列点云模型通过将点云数据映射为空间上邻近的点云序列,在提升计算效率的同时,还扩展了感受野。然而,感受野的扩大通常伴随着对局部精细特征捕捉能力的下降,导致模型在学习局部细节信息方面存在不足。为此,本文提出了一种基于掩码对比学习的序列点云模型局部特征增强方法,以解决序列点云模型对局部信息学习能力不足的问题。具体而言,本方法设计了一种融合掩码对比学习与有监督点云分割的模型,通过引入对比学习深入挖掘点云数据中的局部特征。为实现自监督对比学习与有监督分割任务之间的有效协同,模型采用了一种正则化策略,在保持特征一致性的同时平衡两种任务的学习目标。在ShapeNet Part和 S3DIS 数据集上的实验结果表明,本方法有效的改进了模型在复杂场景的的分割性能。在多个评价指标上,本方法均提升了现有模型,充分验证了所提出方法的有效性。

In recent years, sequential point cloud models have demonstrated substantial potential in the field of point cloud processing. Compared with traditional KNN-based neighborhood feature aggregation methods, these sequential models enhance computational efficiency while expanding the receptive field by mapping point cloud data into spatially adjacent sequences. However, the expansion of the receptive field typically compromises the model\'s ability to capture fine-grained local features, resulting in insufficient learning of detailed local information. To address this limitation, this paper proposes a masked contrastive learning-based approach for enhancing local features in sequential point cloud models. Specifically, we design a unified framework integrating masked contrastive learning with supervised point cloud segmentation, where contrastive learning tasks are employed to intensively explore local characteristics within point cloud data. To achieve effective collaboration between self-supervised contrastive learning and supervised segmentation tasks, the model incorporates a regularization strategy that maintains feature consistency while balancing the learning objectives of both tasks. Experimental evaluations on the ShapeNet Part and S3DIS datasets demonstrate that the proposed method significantly improves segmentation performance in complex scenarios. Across multiple evaluation metrics, our approach outperforms existing models, conclusively validating the effectiveness of the proposed methodology.

王晓荣、黄华

北京交通大学计算机科学与技术学院北京交通大学计算机科学与技术学院

计算技术、计算机技术

计算机视觉点云分割对比学习局部特征增强

omputer VisionPoint Cloud SegmentationContrastive LearningLocal Feature Enhancement

王晓荣,黄华.基于掩码对比学习的序列点云模型局部特征增强方法[EB/OL].(2025-03-12)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202503-96.点此复制

评论