基于点击驱动的人体解析算法研究
本文研究了一种基于点击驱动的人体解析算法,以满足用户对特定目标实例进行精准分割,解决现有算法中分割冗余和计算复杂度高的问题。提出了一种多模块协同的点击驱动算法框架,包括中心点与偏移特征耦合模块、空间实例解耦模块和随机点实例匹配模块。中心点模块通过特征金字塔网络提取多尺度特征并结合偏移特征;解耦模块通过空间和通道的再校准优化实例特征;随机点模块模拟用户点击以实现实例匹配。实验采用MHPv2.0数据集,结合APp vol等指标进行性能评估。实验表明,该算法在单人解析和多人解析中均显著提高了时间效率和显存利用率,尤其在复杂多人场景下表现出较强的鲁棒性和准确性。相比传统方法,时间消耗和显存占用显著降低,同时在实例分割精度上具有优势。点击驱动的人体解析算法通过模块协同显著提高了解析效率,适用于实时处理和资源受限场景。但在复杂人群和遮挡情况下仍有改进空间,未来可结合注意力机制或图像增强技术提升性能,并扩展至其他应用领域。
In this paper, a click-driven human parsing algorithm is proposed to enable precise segmentation of specific target instances, addressing issues of segmentation redundancy and high computational complexity in existing methods. A multi-module collaborative framework is introduced, including a center-offset feature fusion module, a spatial instance decoupling module, and a random point instance matching module. The center module extracts multi-scale features through a feature pyramid network and integrates offset features; the decoupling module optimizes instance features via spatial and channel recalibration; and the random point module simulates user clicks for instance matching. Experiments conducted on the MHPv2.0 dataset, using metrics such as APp vol, demonstrate that the proposed algorithm significantly enhances time efficiency and memory utilization in both single-person and multi-person parsing scenarios, exhibiting strong robustness and accuracy in complex multi-person contexts. Compared to traditional methods, the algorithm achieves notable reductions in time consumption and memory usage while delivering superior instance segmentation accuracy. By leveraging module collaboration, the click-driven human parsing algorithm improves parsing efficiency, making it suitable for real-time processing and resource-constrained scenarios. However, further improvements are needed in crowded and occluded situations. Future work could integrate attention mechanisms or image enhancement techniques to enhance performance and extend the algorithm to other application domains.
金磊、王奕斐、初佳明
电子工程学院,北京邮电大学,100876
计算技术、计算机技术
交互式分割点击驱动人体解析特征解耦
Interactive SegmentationClick-DrivenHuman ParsingFeature Decoupling
金磊,王奕斐,初佳明.基于点击驱动的人体解析算法研究[EB/OL].(2025-03-13)[2025-08-13].http://www.paper.edu.cn/releasepaper/content/202503-119.点此复制
评论