|国家预印本平台
首页|跨任务交互的语义增强遥感图像高度估计

跨任务交互的语义增强遥感图像高度估计

中文摘要英文摘要

三维地理信息对于理解生活环境具有重要意义。由于传统的激光雷达获取数据成本较高,单视角光学遥感图像高度估计成为了一种有吸引力的替代方案。然而,遥感图像高度值的分布往往是以低高度值像素(如背景)为首的长尾分布,因此经过训练的网络通常存在偏差,容易低估建筑物的高度,导致明显的实例级高度偏差。针对上述问题,本文提出了一种通过语义信息约束和跨任务交互的遥感图像高度估计方法,通过引入基于局部类别表征和全局类别表征的语义分割模块,增强模型对不同地物类别高度特征的感知能力,并采用特征交互模块优化语义信息与高度信息的融合,以减少对高层建筑等少样本类别的高度低估现象。在DFC2019数据集上的广泛实验表明,本方法具有良好的泛化能力,并在性能上优于现有方法。

3D geo-information plays a crucial role in understanding the living environment. Due to the high costs associated with LiDAR-based data acquisition, monocular height estimation from optical remote sensing images has emerged as an attractive alternative. However, the distribution of height values in remote sensing images typically follows a long-tailed pattern, with low-height pixels (e.g., background) as the dominant category. As a result, trained networks tend to exhibit bias, often underestimating building heights, leading to significant instance-level height deviations. To address this issue, we propose a novel height estimation approach for remote sensing images, integrating semantic constraints and cross-task interactions. Specifically, a semantic segmentation module leveraging both local and global category representations is introduced to enhance the model\'s perception of height variations across different land cover classes. Additionally, a feature interaction module is employed to optimize the fusion of semantic and height information, mitigating height underestimation for high-rise buildings and other minority categories. Extensive experiments on the DFC2019 dataset demonstrate that the proposed method exhibits strong generalization capabilities and outperforms existing approaches in terms of accuracy and robustness.

彭岳星、卫豪才

北京邮电大学信息与通信工程学院,北京 100876北京邮电大学信息与通信工程学院,北京 100876

测绘学遥感技术

深度学习遥感图像处理单目高度估计长尾分布

eep learningremote sensing image processingmonocular height predictionlong-tailed distribution

彭岳星,卫豪才.跨任务交互的语义增强遥感图像高度估计[EB/OL].(2025-03-17)[2025-05-09].http://www.paper.edu.cn/releasepaper/content/202503-146.点此复制

评论