Unified evolutionary optimization for high-fidelity spin qubit operations
Unified evolutionary optimization for high-fidelity spin qubit operations
Developing optimal strategies to calibrate quantum processors for high-fidelity operation is one of the outstanding challenges in quantum computing today. Here, we demonstrate multiple examples of high-fidelity operations achieved using a unified global optimization-driven automated calibration routine on a six dot semiconductor quantum processor. Within the same algorithmic framework we optimize readout, shuttling and single-qubit quantum gates by tailoring task-specific cost functions and tuning parameters based on the underlying physics of each operation. Our approach reaches systematically $99\%$ readout fidelity, $>99\%$ shuttling fidelity over an effective distance of 10$\mu$m, and $>99.5\%$ single-qubit gate fidelity on timescales similar or shorter compared to those of expert human operators. The flexibility of our gradient-free closed loop algorithmic procedure allows for seamless application across diverse qubit functionalities while providing a systematic framework to tune-up semiconductor quantum devices and enabling interpretability of the identified optimal operation points.
Brennan Undseth、Irene Fernandez de Fuentes、Lieven M. K. Vandersypen、Eliska Greplova、Yuta Matsumoto、Maxim De Smet、Christian Ventura Meinersen、Kenji Capannelli、Maximilian Rimbach-Russ、Sam R. Katiraee-Far、Valentina Gualtieri、Giordano Scappucci
自动化技术、自动化技术设备
Brennan Undseth,Irene Fernandez de Fuentes,Lieven M. K. Vandersypen,Eliska Greplova,Yuta Matsumoto,Maxim De Smet,Christian Ventura Meinersen,Kenji Capannelli,Maximilian Rimbach-Russ,Sam R. Katiraee-Far,Valentina Gualtieri,Giordano Scappucci.Unified evolutionary optimization for high-fidelity spin qubit operations[EB/OL].(2025-03-15)[2025-05-12].https://arxiv.org/abs/2503.12256.点此复制
评论