|国家预印本平台
首页|基于对比学习和特征解耦的医学图像泛化分割

基于对比学习和特征解耦的医学图像泛化分割

中文摘要英文摘要

域偏移指的是训练数据(源域)和实际应用中的数据(目标域)之间存在分布差异,这种差异可能来源于不同的成像设备、成像参数、患者群体或医疗机构。由于域偏移的存在,在源域上训练的分割模型在未见过的目标域上往往表现不佳,这严重限制了模型的泛化能力和实际应用价值。为了解决域偏移,本文提出了一种新的域泛化医学图像分割方法,结合了特征解耦和对比学习,使模型在训练过程中获取更通用的域不变特征,提升其对未见域的分割性能。在网络框架中采用了域特定归一化层的联合训练,为不同的源域训练不同的归一化层,将特征映射到公共空间,同时引入了对比学习,缓解不同源域的域间差异。对于编码器端产生的特征进行域特定解耦,通过域鉴别器选择出域特定通道,抑制域特定通道,同时利用对偶注意力增强模块,从通道和空间两个角度增强特征,提升模型性能。该网络模型在常用的两个医学图像域泛化分割数据集上与其他方法进行了对比实验,实验表明该模型结果优于其他模型。

omain shift refers to the distribution difference between the training data (source domain) and the data in practice (target domain), which may originate from different imaging devices, imaging parameters, patient populations, or medical institutions. Due to the domain shift, segmentation models trained on the source domain often perform poorly on the unseen target domain, which seriously limits the generalization ability and practical application value of the model. To solve the domain shift, a new domain generalization medical image segmentation method is proposed in this paper, which combines feature decoupling and contrast learning, so that the model can obtain more general domain invariant features in the training process and improve the segmentation performance of the unseen domain. In the network framework, the joint training of domain-specific normalized layers is adopted to train different normalized layers for different source domains, map features to the common space. Meanwhile, contrast learning is introduced to alleviate the inter-domain differences between different source domains. For the features generated at the encoder end, the domain-specific decoupling is carried out, the domain-specific channels are selected by the domain discriminator, and the domain-specific channels are suppressed. At the same time, the dual attention enhancement module is used to enhance the features from both channel and space perspectives to improve the model performance. The network model is compared with other methods on two common medical image domain generalization segmentation datasets, and the results show that the model is better than other models

周金莉、黄慧芳

北京交通大学计算机学院,北京 100091 北京交通大学计算机学院,北京 100091

医学研究方法基础医学

医学图像分割迁移学习域泛化

Medical Image SegmentationTransfer LearningDomain Generalization

周金莉,黄慧芳.基于对比学习和特征解耦的医学图像泛化分割[EB/OL].(2025-03-18)[2025-05-04].http://www.paper.edu.cn/releasepaper/content/202503-151.点此复制

评论