Non-Degenerate Multilinear Singular Multipliers with Fractional Rank
Non-Degenerate Multilinear Singular Multipliers with Fractional Rank
We establish $L^p$ estimates for multilinear multipliers acting on $(n-1)$-tuples of functions on $\mathbb{R}^d$. We assume that the multiplier satisfies symbol estimates outside a linear subspace of dimension $m$. The difficulty of proving $L^p$ bounds increases with the rank $\frac{m}{d}$, and our focus is on the fractional rank case $\frac{m}{d}<\frac{n}{2}\leq \lceil \frac{m}{d}\rceil$.
Jianghao Zhang
数学
Jianghao Zhang.Non-Degenerate Multilinear Singular Multipliers with Fractional Rank[EB/OL].(2025-03-18)[2025-05-12].https://arxiv.org/abs/2503.14635.点此复制
评论