|国家预印本平台
首页|基于遗传算法与粒子群算法融合的协同定位算法

基于遗传算法与粒子群算法融合的协同定位算法

o-location algorithm based on the fusion of genetic algorithm and particle swarm algorithm

中文摘要英文摘要

协同定位技术是多机器人自主行为的一项重要技术,室内机器人在偏远位置或者信号差的位置会接受到非视距信号,导致其定位精度低。本文提出了一种在无线传感器网络环境下利用遗传算法与粒子群优化算法融合的协同定位算法(GPSO)来对多机器人进行定位。该算法引入遗传算法(GA)的选择、交叉和变异思想,来对经典粒子群优化算法(PSO)中的粒子进行筛选,并给粒子动态的设置惯性权重和学习因子,增强了算法的寻优能力,解决了PSO算法收敛过快的问题,提升了多机器人的定位精度。本文在视距和非视距环境下进行了仿真实验,结果表明,本文提出的GPSO算法定位精度优于经典的PSO算法。

o-location technology is an important technology for the autonomous behavior of multiple robots. Indoor robots will receive non-line-of-sight signals in remote locations or locations with poor signals, resulting in low positioning accuracy. This paper proposes a collaborative positioning algorithm (GPSO) that uses genetic algorithm and particle swarm optimization algorithm fusion to locate multiple robots in a wireless sensor network environment. The algorithm introduces the selection, crossover and mutation ideas of genetic algorithm (GA) to filter particles in classic particle swarm optimization algorithm (PSO), and dynamically set inertia weights and learning factors for particles, which enhances the optimization of the algorithm Ability to solve the problem of too fast convergence of the PSO algorithm and improve the positioning accuracy of multi-robots. In this paper, simulation experiments are carried out in line-of-sight and non-line-of-sight environments. The results show that the positioning accuracy of the GPSO algorithm proposed in this paper is better than that of the classic PSO algorithm

周正、杨福兴

无线通信

多机器人非视距协同定位遗传算法粒子群优化算法

Multi-robotNLOSCo-locationGenetic AlgorithmParticle Swarm Optimization Algorithm

周正,杨福兴.基于遗传算法与粒子群算法融合的协同定位算法[EB/OL].(2022-03-04)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202203-49.点此复制

评论