|国家预印本平台
首页|基于粗糙集的粮食产量SVM非线性组合预测模型

基于粗糙集的粮食产量SVM非线性组合预测模型

Study on SVM Nonlinear Combination Forecasting Method for Grain Yield Based on Rough Set Theory

中文摘要英文摘要

针对粮食产量预测问题,引入支持向量机智能优化算法以及组合预测技术。利用基于粗糙集理论的权系数确定方法,将权系数确定问题转化为标准粗糙集理论中属性重要性评价问题,建立一种基于标准粗糙集理论的支持向量机组合预测方法;利用构建的组合预测模型对黑龙江省粮食总产量的历史数据进行组合预测,分析表明所建立的组合预测模型对粮食产量的预测精确度较高,与实际值具有很好的一致性,预测结果平均绝对误差比传统建模方法明显降低。

In this paper,aiming at it's own prediction of grain output,draw into support vector machine intelligent optimization algorithms and combination prediction technique. Employ the method of determining weight coefficient based on rough set theory. Establish a combination forecasting method on the basis of standard rough set theory. Use the SOM method of self-organizing neural network to discretizationize attribute property in order to establish information systems and decision table. Transform determining weight coefficient into the evaluation of attribute significance among standard rough set theory,work out weight coefficient of single model amid combination prediction model. Use constructed combination prediction model,predict the historical data of grain gross output in Heilongjiang reclamation areas. It shows the high accuracy of constructed combination prediction model in predicting the grain output. Be consistent with the true value. Mean absolute error of the prediction results get lower than traditional modeling method.

袁玉萍、安增龙

农业科学技术发展农业科学研究

农业系统工程组合预测粗糙集支持向量机权系数

agricultural system engineeringombination forecastingRough setSupport vector machines(SVMs)Weight coefficient

袁玉萍,安增龙.基于粗糙集的粮食产量SVM非线性组合预测模型[EB/OL].(2013-03-06)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201303-183.点此复制

评论