4C-ker: A method to reproducibly identify genome-wide interactions captured by 4C-Seq experiments
4C-ker: A method to reproducibly identify genome-wide interactions captured by 4C-Seq experiments
ABSTRACT 4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or “bait”) that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes. AUTHORS SUMMARYCircularized chromosome conformation capture, or 4C-Seq is a technique developed to identify regions of the genome that are in close spatial proximity to a single locus of interest (‘bait’). This technique is used to detect regulatory interactions between promoters and enhancers and to characterize the nuclear environment of different regions within and across different cell types. So far, existing methods for 4C-Seq data analysis do not comprehensively identify interactions across the entire genome due to biases in the technique that are related to the decrease in 4C signal that results from increased 3D distance from the bait. To compensate for these weaknesses in existing methods we developed 4C-ker, a method that explicitly models these biases to improve the analysis of 4C-Seq to better understand the genome wide interaction profile of an individual locus.
Raviram Ramya、Fu Yi、Swanzey Emily、Snetkova Valentina、Bonneau Richard、Skok Jane、Rocha Pedro P.、Badri Sana、M¨1ller Christian L.、Miraldi Emily R.、Proudhon Charlotte
Department of Pathology, New York University School of Medicine||Department of Biology, New York UniversityDepartment of Pathology, New York University School of Medicine||Department of Biology, New York UniversitySkirball Institute, New York University School of MedicineDepartment of Pathology, New York University School of MedicineDepartment of Biology, New York University||Department of Computer Science, Courant Institute of Mathematical Sciences||Simons Center for Data AnalysisDepartment of Pathology, New York University School of MedicineDepartment of Pathology, New York University School of MedicineDepartment of Pathology, New York University School of MedicineDepartment of Pathology, New York University School of Medicine||Department of Biology, New York University||Simons Center for Data AnalysisDepartment of Biology, New York University||Department of Computer Science, Courant Institute of Mathematical Sciences||Simons Center for Data AnalysisDepartment of Pathology, New York University School of Medicine
生物科学研究方法、生物科学研究技术生物科学现状、生物科学发展分子生物学
Raviram Ramya,Fu Yi,Swanzey Emily,Snetkova Valentina,Bonneau Richard,Skok Jane,Rocha Pedro P.,Badri Sana,M¨1ller Christian L.,Miraldi Emily R.,Proudhon Charlotte.4C-ker: A method to reproducibly identify genome-wide interactions captured by 4C-Seq experiments[EB/OL].(2025-03-28)[2025-04-24].https://www.biorxiv.org/content/10.1101/030569.点此复制
评论