Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity
Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity
Abstract Synaptic efficacy is subjected to activity-dependent changes on short-and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a life-time and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short-and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre-and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual-and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short-and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates.
Graupner Michael、Deperrois Nicolas
生物科学理论、生物科学方法生物科学研究方法、生物科学研究技术生理学
Graupner Michael,Deperrois Nicolas.Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity[EB/OL].(2025-03-28)[2025-04-24].https://www.biorxiv.org/content/10.1101/565291.点此复制
评论