|国家预印本平台
首页|基于BERT的医疗安全事件智能分类研究与实践

基于BERT的医疗安全事件智能分类研究与实践

Research and practice on intelligent classification of medical safety incidents based on deep BERT

中文摘要英文摘要

目的/意义 改进医疗安全事件分类评估的人工模式,提升工作效率和时效性。方法/过程 选取既往的医疗安全事件数据进行预处理,利用BERT(Bidirectional Encoder Representations from Transformers)模型进行训练、测试、迭代优化,构建医疗安全事件智能分类预测模型。结果/结论 利用该模型对2022年1月至11月临床科室上报的466例医疗安全事件进行分类,其中267例医疗不良事件(包括25例I级事件、105例II级事件、36例III级事件、101例IV级事件)和199例患源性安全隐患事件,F1值达0.66。将BERT应用于医疗安全事件分类评估辅助,可一定程度提升该项工作的效率和时效性,有助于及时干预医疗安全风险隐患。

Purpose/Significance To improve the manual mode of medical safety event classification and evaluation, and improve work efficiency and timeliness. Method/Process Select past medical safety event data for preprocessing, use BERT (Bidirectional Encoder Representations from Transformers)model for training, testing, and iterative optimization, and construct an intelligent classification and prediction model for medical safety events. Result/Conclusion The model was used to classify 466 medical safety incidents reported by clinical departments from January to November 2022, including 267 medical adverse events (including 25 Level I events, 105 Level II events, 36 Level III events, and 101 Level IV events) and 199 patient related safety hazards, F1 value reaches 0.66. Applying BERT to assist in the classification and evaluation of medical safety incidents can improve the efficiency and timeliness of this work to a certain extent, and help to intervene in medical safety risk hazards in a timely manner.

朱溥珏、周炯、陈政、赵从朴、袁达、彭华

10.12201/bmr.202312.00021

医学研究方法预防医学安全科学

医疗安全事件BERT深度学习智能分类

Medical safety incidentsBERTeep learningIntelligent classification

朱溥珏,周炯,陈政,赵从朴,袁达,彭华.基于BERT的医疗安全事件智能分类研究与实践[EB/OL].(2023-07-11)[2025-08-15].https://www.biomedrxiv.org.cn/article/doi/bmr.202312.00021.点此复制

评论