Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors
Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the 'inside-out' model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams.
Huilgol Dhananjay、Levine Jesse M.、Galbavy William、Wang Bor-Shuen、Huang Z Josh
细胞生物学遗传学分子生物学
Huilgol Dhananjay,Levine Jesse M.,Galbavy William,Wang Bor-Shuen,Huang Z Josh.Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors[EB/OL].(2025-03-28)[2025-04-29].https://www.biorxiv.org/content/10.1101/2024.03.01.582863.点此复制
评论